This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



To cite this Article Deep, Gagan, Chaturvedi, Deepali and Narula, A. K.(2009) 'Guanylurea derivatives of diorganotin(IV) dichloride', Journal of Coordination Chemistry, 62: 12, 2058 — 2066 To link to this Article: DOI: 10.1080/00958970902756044 URL: http://dx.doi.org/10.1080/00958970902756044

# PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.



# Guanylurea derivatives of diorganotin(IV) dichloride

GAGAN DEEP, DEEPALI CHATURVEDI and A.K. NARULA\*

School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Kashmere Gate, Delhi-110006, India

(Received 18 April 2007; in final form 6 October 2008)

A series of organotin complexes with guanylurea  $(H_2L)$  have been synthesized. All the complexes 1–8, BuMeSnCIHL, PhEtSnCIHL, PhMeSnCIHL, PhBuSnCIHL, BuMeSnL, PhEtSnL, PhMeSnL, and PhBuSnL have been characterized by elemental analysis, FTIR, and multinuclear spectroscopic techniques. Complexes 1–4 are five-coordinate whereas 5–8 are four-coordinate.

*Keywords*: Diorganotin dichlorides; Diorganotin oxide; Guanylurea; Synthesis; Characterization

#### 1. Introduction

Organotin complexes have potential industrial applications and biological activity [1]. Tetraorganotin compounds, tintetrahalides, and stannanes  $(SnR_nH_{4-n})$ , where n=1-3 are of synthetic value for production of derivatives for industrial end values [2]. Industrial use of less-toxic organotin compounds ( $R_2SnX_2$  and  $RSnX_3$  types) accounts for almost two-third of the total world's consumption of tin. Several organotin compounds such as di(*n*-butyl)tin laurate are used as hydrochloric acid scavengers in PVC. Organotin carboxylate complexes are employed as catalysts for trans-esterification and polyurethane polymerization [2]. Many organotin compounds are used as antitumor drugs [3–6]; other biological applications include insecticides, fungicides, wood preservatives, and anti-inflammatory drugs [7, 8].

Synthesis and structural studies of neutral tetra-coordinated tin compounds derived from ligands with strategically placed donor atoms (O, N, and S) have received attention [9], and there has been resurgence of interest in metal-sulfur and

<sup>\*</sup>Corresponding author. Email: aknarula11@rediffmail.com

metal-nitrogen chemistry because of the occurrence of complexes having metal-sulfur and metal-nitrogen bonds in biological systems [10–12].

Guanylurea compounds are nitrification inhibitors in agriculture and horticulture [13], used as fire retardant in plywood, textiles, timber, and other polymers [14–17] and in making fire-resistant double-sided adhesive tapes for fixing of electronic devices [18]. Its complexes of Cu, Zn, Co, and Fe are used in deodorants for removing NH<sub>3</sub>, H<sub>2</sub>S, and mercaptans from odorous air [19] and in preventing the cytostatically caused falling out of hair [20]. Guanylurea is a strong bidentate ligand [21]. Complexes of guanylurea with B, V, As, Cu, Ni, and Si are well known [22–24]. The ligand has been used extensively in coordination chemistry of transition metals but its potential in main group chemistry is limited.

We elected to study the reactions of phenylmethyltin dichloride, phenylethyltin dichloride, phenylbutyltin dichloride, and butylmethyltin dichloride with guanylurea in 1:1 molar ratio to synthesize complexes having the N,O'-bidentate coordination and N,N'-bidentate coordination.

#### 2. Experimental

#### 2.1. Materials

All manipulations were carried out using standard Schlenk techniques under a dry nitrogen atmosphere. Organotin compounds,  $R_4Sn$  (R = Me, Et, Bu),  $RSnCl_3$  (R = Me, Bu, Ph), and guanylurea sulfate (Aldrich) were used as received. Methylphenyltin dichloride, ethylphenyltin dichloride, *n*-butylphenyltin dichloride, *n*-butylphenyltin dichloride [25], corresponding diorganotin oxides, and guanylurea were prepared as reported [26, 27].

### 2.2. Measurements

Tin was quantitatively determined by standard method [28]. Solvents were dried and distilled by reported methods. IR spectra were recorded using a Shimadzu FTIR 8700 spectrophotometer. <sup>1</sup>H-, <sup>13</sup>C-, and <sup>119</sup>Sn-NMR spectra were recorded on a Bruker 300 MHz spectrometer using CDCl<sub>3</sub> as solvent. Elemental analysis was carried out using a EURO EA 3000 elemental analyzer. The FAB mass spectra in 3-nitrobenzyl alcohol (NBA) were recorded at room temperature on a JEOL SX 102/DA-6000 Mass Spectrometer/Data System using argon/xenon (6 kV, 10 mA) as the FAB gas. The accelerating voltage was 10 kV.

#### 3. Synthesis

Complexes 1–4 were obtained following a procedure, reported here for 1 and 5–8 were obtained following a procedure, reported for 5.

#### 3.1. Synthesis of PhMeSnClHL (1)

A mixture of ~2.5 mmol of KOH in 10 mL methanol and 0.25 g (2.5 mmol) of guanylurea was homogenized by shaking at room temperature and the pH was adjusted to 7 by addition of 2 N HCl. PhMeSnCl<sub>2</sub> (0.705 g, 2.5 mmol) was added and the mixture was stirred for 2 h at room temperature. The solution was filtered and the filtrate was evaporated under vacuum. The product was dissolved in a minimum of methanol, filtered and the solvent from the filtrate was removed *in vacuo* to obtain a pure light yellow viscous liquid. Yield, 71%: Anal. Calcd for C<sub>9</sub>H<sub>13</sub>N<sub>4</sub>OClSn: C, 31.1; H, 3.8; N, 16.2; Cl, 10.2; Sn, 34.1. Found: C, 30.8; H, 3.6; N, 16.5; Cl, 9.9; Sn, 33.9%.

#### 3.2. Synthesis of PhMeSnL (5)

A solution of 0.705 g (2.5 mmol) of PhMeSnCl<sub>2</sub> in ~15 mL methanol was added to a mixture of 5.5 mmol of KOH and ~15 mL of methanol. PhMeSnO was separated immediately. It was washed twice with methanol and added to a solution of 0.25 g (2.5 mmol) guanylurea in methanol within 5 min and the resulting solution was stirred at room temperature. After 4 h small amounts of PhMeSnO were filtered off and clear colorless filtrate was concentrated *in vacuo*. During this operation a dark yellow viscous liquid was separated. Yield, 61%: Anal. Calcd for C<sub>9</sub>H<sub>12</sub>N<sub>4</sub>OSn: C, 34.8; H, 3.9; N, 18.0; Sn, 38.2. Found: C, 34.6; H, 3.8; N, 18.3; Sn, 38.1%.

$$R^{1}R^{2}SnCl_{2} + H_{2}L \xrightarrow[room temp. 2h]{KOH/Methanol} R^{1}R^{2}SnClLH + KCl + H_{2}O$$

$$R^{1}R^{2}SnCl_{2} + KOH \xrightarrow{Methanol}_{room temp.} R^{1}R^{2}SnO + 2KCl + H_{2}O$$

$$R^{1}R^{2}SnO + H_{2}L \xrightarrow{Methanol/4 h/r.t.} R^{1}R^{2}SnL + H_{2}O$$

where  $R^1 = Ph$ ,  $R^2 = Me$  (1, 5);  $R^1 = Ph$ ,  $R^2 = Et$  (2, 6);  $R^1 = Ph$ ,  $R^2 = Bu$  (3, 7);  $R^1 = Bu$ ,  $R^2 = Me$  (4, 8).

$$H_{2}L = \underbrace{\begin{array}{c} N^{2}H & O \\ H_{2}^{1}N & H^{3} & H^{2} \end{array}}_{H H_{2}}$$

#### 4. Results and discussion

#### 4.1. Chemistry

Dehydrochlorination occurs during the synthesis of 1–4 and dehydration during the synthesis of 5–8. All complexes were yellow viscous liquids, soluble in

## 4.2. IR spectra (Listing in Supplementary material)

For 1–4, shifting of the bands at  $1638 \text{ cm}^{-1}$  and  $1310 \text{ cm}^{-1}$  for C=N from  $1604 \text{ cm}^{-1}$ and  $1350 \text{ cm}^{-1}$ , respectively, may be explained by ligand tautomerization [27]. The strong band at  $1740 \text{ cm}^{-1}$  for guanylurea, assigned to C=O shifted to ~1711 cm<sup>-1</sup>, indicating that carbonyl is involved in bond formation. Further absorption bands at ~664 cm<sup>-1</sup> due to  $\nu$ (Sn–O) [29] indicated carbonyl bonding with tin. The band at ~469 cm<sup>-1</sup> showed formation of a Sn–N bond [27]. Stretching frequency due to  $\nu$ (NH<sub>2</sub>) mode was observed at ~3418 cm<sup>-1</sup> both in the ligand and derivatives, indicating that both end amino groups are not involved in bond formation. The band due to  $\nu$ (N<sup>3</sup>H), observed at 3130 cm<sup>-1</sup> in case of ligand, was absent in the complexes.

For 5–8, the persistence of the strong band at 1740 cm<sup>-1</sup> for C=O and 1604 cm<sup>-1</sup> for C=N group at the same positions as for free ligand showed that neither C=O nor C=N were involved in bond formation. The band due to the  $\nu$ (N<sup>3</sup>H) at 3130 cm<sup>-1</sup> for ligand was observed in 5–8 at the same position indicating non-involvement of N<sup>3</sup>H in bond formation. Absence of stretching frequencies due to  $\nu$ (Sn–O) and  $\nu$ (NH<sub>2</sub>) modes at ~561 and 3418 cm<sup>-1</sup> [29], respectively, indicated that bond formation occurred through the –NH<sub>2</sub> of the ligand with loss of water.

Due to strong chelating nature of guanylurea [21], it is proposed that formation of a chelate ring had taken place, as for boron and other complexes [21, 27].

#### 4.3. NMR spectra

<sup>1</sup>H-NMR spectra of ligand showed a signal at  $\delta 5.7$  due to N<sup>4</sup>H; N<sup>1</sup>H, N<sup>2</sup>H, and N<sup>3</sup>H were observed as a broad signal at  $\delta 5.3$ –4.7. In <sup>1</sup>H-NMR spectra of **1**–4, the N<sup>4</sup>H protons were observed downfield at  $\sim \delta 6.2$  due to coordination of carbonyl with Sn. N<sup>2</sup>H and N<sup>1</sup>H protons were observed as a broad signal at  $\delta 5.5$ –4.9. In <sup>1</sup>H-NMR spectra of **5–8**, the N<sup>4</sup>H proton was observed at  $\sim \delta 4.8$  indicating direct coordination of N<sup>4</sup>H with Sn while all other protons of the ligand were a broad band at  $\delta 3.9$ –3.5. The other <sup>1</sup>H-NMR signals of all the complexes were observed at their usual positions (table 1). The proton integrations were consistent with the molecular formula.

<sup>13</sup>C-NMR spectra of complexes showed a signal at  $\delta$ 182–171 due to C=O [30] and signals at  $\delta$ 10.5–10.2 and 18.7–18.3 were due to ethyl-carbons. Peaks in the range  $\delta$ 136.5–127.1 were due to phenyl carbons at their usual positions [31]; phenyl carbons coupled to tin could not be distinguished due to identical environment of *ortho* and *meta* carbon of the phenyl ring and assignments made by analogy [32]. The other <sup>13</sup>C-NMR signals for all complexes are shown in table 2.

<sup>119</sup>Sn-NMR spectra of **1–4** (figure 1) showed singlets at  $\delta$  –76,  $\delta$  –55,  $\delta$  –23, and  $\delta$  –67, respectively, while <sup>119</sup>Sn-NMR spectra of **5–8** (figure 2) showed singlets at  $\delta$  119,  $\delta$  144,  $\delta$  173, and  $\delta$  139, respectively. The appearance of the singlets showed that there is only one isomer [33]. The signals in **1–4** and **5–8** are attributed to

| Table  | 1. <sup>1</sup> H-NMR spectra        | l data of derivatives.                  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------|--------------------------------------|-----------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.    | Phenyl protons                       | $N^{2}H$ and $N^{1}H/N^{3}H$ (figure 1) | N <sup>4</sup> H (figure 1)  | $\mathrm{Sn}^{-1}\mathrm{CH}_2$ $^2\mathrm{CH}_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sn-CH <sub>3</sub>                                 | <sup>1</sup> CH <sub>3</sub> <sup>2</sup> CH <sub>2</sub> <sup>3</sup> CH <sub>2</sub> <sup>4</sup> CH <sub>2</sub> Sn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7 1    | 7.7–7.5 (5 H, m)<br>7.5–7.3 (5 H, m) | 5.2 (3 H, br)<br>4.9 (3 H, br)          | 6.2 (2 H, s)<br>6.2 (2 H, s) | $\frac{1.1}{2} \frac{q}{r^{1196}} \frac{(1)}{1.0} \frac{1.3}{100} \frac{t}{2} \frac{(2)}{100} \frac{1}{2} \frac{1}{100} \frac{1}{20} \frac{1}{100} \frac{1}{20} \frac{1}{100} \frac{1}{100}$ | 1.1 (s) $^{2}J(^{119}Sn,^{1}H)$ 69.2               | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3      | 7.6–7.4 (5 H, m)                     | 5.1 (3 H, br)                           | 6.1 (2 H, s)                 | J(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I                                                  | 0.8t (4), 1.6-1.1m (1, 2, 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4      | I                                    | 5.5 (3 H, br)                           | 6.2 (2 H, s)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.1 (s) ${}^{2}J({}^{119}Sn,{}^{1}H)$ 70.4         | -J(-5.0, H) /3.1<br>0.9t (4) 1.9–1.4m (1, 2, 3)<br>$2 \frac{110}{2} \frac{110}{2} \frac{110}{72} \frac{110}{2} \frac{110}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 5 9    | 7.4-7.2 (5 H, m)<br>7.4-7.2 (5 H, m) | 3.9 (3 H, br)<br>3.6 (3 H, br)          | 4.9 (1 H, s)<br>4.8 (1 H, s) | 1.5 q (1), 1.9 t (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.2 (s) $^{2}J(^{119}\text{Sn},^{1}\text{H})$ 62.7 | 0.c/ (H , IIC - )/-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ٢      | 7.3–7.2 (5 H, m)                     | 3.7 (3 H, br)                           | 4.7 (1 H, s)                 | -J(****) 08.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | I                                                  | 0.8t (4), 1.6–1.1 m (1, 2, 3)<br>$2 \frac{110}{2} \frac{111}{2} \frac{111}{2} \frac{10}{2} $ |
| 8      | I                                    | 3.5 (3 H, br)                           | 4.8 (1 H, s)                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.3 (s) $^{2}J(^{119}\text{Sn},^{1}\text{H})$ 59.4 | $^{0.91}_{2/1^{119}\text{Sn}, 11}$ $^{0.92}_{2/1^{119}\text{Sn}, 11}$ $^{0.92}_{2/1^{119}\text{Sn}, 11}$ $^{0.92}_{2/1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| m = mt | iltiplet, $s = singlet$ , $q = qu$   | artet, $t = triplet$ , $br = broad$ .   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| derivatives.       |
|--------------------|
| of                 |
| data               |
| spectral           |
| <sup>1</sup> H-NMR |
| 1.                 |
| able               |

2062

Downloaded At: 08:30 23 January 2011

# G. Deep et al.

|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |      |       |                                                                       |                                                                                                                                             | 1                     |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|-------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| No. | Phenyl carbons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <sup>1</sup> CH <sub>3</sub> <sup>2</sup> CH <sub>2</sub> <sup>3</sup> CH <sub>2</sub> <sup>4</sup> CH <sub>2</sub> Sn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C=N     | J    | C=0   | CH <sub>3</sub>                                                       | <sup>1</sup> CH <sub>2</sub> <sup>2</sup> CH <sub>3</sub>                                                                                   | <sup>119</sup> Sn NMR |
| -   | $ \begin{array}{c} 135.8 \ (C_1), \ 134.2 \ (C_4), \\ 128.7 \ (C_2, \ C_3, \ C_5, \ C_6) \\ {}^{1}J^{(119}\mathrm{Sn}, {}^{13}\mathrm{Ch}\mathrm{B}\mathrm{I}_{3}\mathrm{2}J^{(119}\mathrm{Sn}, {}^{13}\mathrm{Ch}\mathrm{B}\mathrm{I}_{3}\mathrm{C}\mathrm{J}\mathrm{49}\mathrm{.5} \end{array} \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 157.7 1 | 59.2 | 172   | 9.5 <sup>1</sup> J( <sup>119</sup> Sn, <sup>13</sup> C) 595.1         | I                                                                                                                                           | -23                   |
| 7   | <sup>3</sup> J( <sup>11</sup> 5m, <sup>13</sup> C)68.1<br>136.5 (C1), 134.9 (C4),<br>128.6 (C <sub>2</sub> , C <sub>3</sub> , C <sub>5</sub> , C <sub>6</sub> )<br><sup>1</sup> J( <sup>119</sup> Sn, <sup>13</sup> C)618.2 <sup>2</sup> J( <sup>119</sup> Sn, <sup>13</sup> C)52.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 157.2 1 | 58.5 | 171   | I                                                                     | 10.2 (1), 18.7 (2)<br><sup>1</sup> J( <sup>119</sup> Sn, <sup>13</sup> C) 553.8<br><sup>2</sup> J( <sup>119</sup> Sn, <sup>13</sup> C) 34.2 | -55                   |
| 3   | <sup>3</sup> J( <sup>119</sup> Sn, <sup>13</sup> C)65.3<br>136.1 (C1), 135.0 (C4),<br>1212.1 (C2, C3, C5, C6)<br>1212.1 (C2, C3, C5, C6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8 28.9(1), 8 27.0(2),<br>8 25.6(3), 8 13.5(4)<br>13.7205 2 24195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 158.7 1 | 57.3 | 173   | I                                                                     | , I<br>,                                                                                                                                    | -67                   |
| 4   | $3_1(195,1) = \frac{1}{3} C)67.3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} J(-201,-202,-201,-2040,0)\\ 3/(195n,13C)73.1\\ \delta = 30.1(1), \delta = 27.7(2),\\ \delta = 25.1(3), \delta = 13.2(4)\\ 13.226.0, 2, 2.1(19,-13.226) \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 158.1 1 | 56.7 | 172   | 8.6 <sup>1</sup> <i>J</i> ( <sup>119</sup> Sn, <sup>13</sup> C) 587.2 |                                                                                                                                             | -76                   |
| N.  | 136.1 (C <sub>1</sub> ), 134.6 (C <sub>4</sub> ),<br>129.1(C <sub>2</sub> , C <sub>3</sub> , C <sub>5</sub> , C <sub>6</sub> )<br>170196-130051 (23, C <sub>3</sub> , C <sub>5</sub> , C <sub>6</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $J(\cdots \sin \cdots \cos 4 - 1(-\infty), -C)3/.2$<br>${}_{3}J(^{119}\sin^{13}C)71.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 155.8 1 | 54.1 | 181   | 9.7 <sup>1</sup> J( <sup>119</sup> Sn, <sup>13</sup> C) 322.9         | I                                                                                                                                           | 173                   |
| 9   | $3_{1}(195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_{1}, 195_$ | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 155.6 1 | 54.2 | 180   | I                                                                     | 10.5 (1), 18.3 (2)<br>$1_{J}$ ( $^{119}$ Sn, $^{13}$ C) 325.2<br>$^{2}_{JJ}$ ( $^{119}$ Sn, $^{13}$ C) 375.2                                | 144                   |
| F   | $3/(1980, 1^{3}C)$<br>$3/(1980, 1^{3}C)$<br>$3.5.9 (C_1), 134.5 (C_4), 128.4 (C_5, C_5, C_5, C_6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | δ 31.3(1), δ 27.9(2),<br>δ 25.8(3), δ 13.3(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 155.3 1 | 53.9 | 182   | I                                                                     |                                                                                                                                             | 139                   |
| ×   | J('''Sn,'''C)535.4 -J('''Sn,''-C)36.8<br>3J(''I'Sn,''3C)54.7<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ${}^{1}_{1}({}^{(17}Sn, {}^{12}C) 327.11 - J({}^{(17}Sn, {}^{12}C) 27.13 - J({}^{(19}Sn, {}^{13}C) 61.5 - 3_{1}J({}^{(19}Sn, {}^{13}C) 61.5 - 1.8(1), \delta 28.3(2), \delta 26.4(3), \delta 13.1(4) - 1_{1}J({}^{(19}Sn, {}^{13}C) 312.4 - 2_{1}J({}^{(19}Sn, {}^{13}C) 312.4 - 2_{1}J({}^{(19}Sn, {}^{13}C) 24.9 - 3_{1}J({}^{(19}Sn, {}^{13}C) 258.9 - 2_{1}J({}^{(19}Sn, {}^{13}C) 24.9 - 3_{1}J({}^{(19}Sn, {}^{(19}Sn, {}^{(19}Sn, {}^{(19}Sn,$ | 155.8 1 | 54.4 | 178.8 | 8.9 <sup>1</sup> <i>J</i> ( <sup>119</sup> Sn, <sup>13</sup> C) 335.6 |                                                                                                                                             | 119                   |

Table 2. <sup>13</sup>C-NMR and <sup>119</sup>Sn NMR spectral data of derivatives.

| 2011       |
|------------|
| January    |
| 23         |
| 08:30      |
| At:        |
| Downloaded |

2063

# Guanylurea derivatives of diorganotin



Figure 1. Structures of 1-4.



Figure 2. Structures of 5-8.

penta-coordinate and tetra-coordinate Sn [34], respectively. The signals more upfield from that of 5–8 were due to increase in electron density on Sn due the oxygen donors of the ligand.

### 4.4. Mass spectra

Every effort to obtain crystals did not produce even a single crystal. Evidence in support of the structures of these compounds came from FAB mass spectral studies.

Under the FAB mass conditions, the compounds displayed very low-intensity molecular ions. These were observed at m/z 347, 361, 389, 327, 311, 325, 353, 291 for  $[M]^+$  for monomeric structures. In all the products, major fragmentation was due to loss of the alkyl. Complete fragmentation of the ligand did not occur in a single event but a part underwent fragmentation and then the remaining part underwent fragmentation. Isotopic ions were observed corresponding to the different isotopes of tin. For instance, the isotopic peaks for PhMeSnL  $[M - CH_3]^+$  were observed at 293 (44.0), 294 (27.5), 295 (75.2), 296 (33.2), 297 (100.0), 299 (14.1), and 301 (16.8). The mass fragmentation data are given in Supplementary material.

#### 5. Conclusion

The stannylguanylureas reported herein are a new class of Sn-N/and O bonded compounds containing guanylurea in the framework. Elemental analysis (table 3) and spectroscopic and literature studies suggested the existence of penta-coordinate and tetra-coordinate structures.

Guanylurea derivatives of diorganotin

|     |                                                                         |           |                                                                 |             | Analysi   | s: Found (Ca | ilcd) (%)   |             |
|-----|-------------------------------------------------------------------------|-----------|-----------------------------------------------------------------|-------------|-----------|--------------|-------------|-------------|
| No. | Reactants<br>Compound:Ligand<br>g(mmol):g(mmol)                         | Yield (%) | Products                                                        | С           | Н         | Z            | Sn          | CI          |
| 1   | PhMeSnCl <sub>2</sub> : H <sub>2</sub> L 0.705 g (2.5):0.255 g (2.5)    | 71        | PhMeSnClHL C <sub>7</sub> H <sub>14</sub> N <sub>4</sub> OSnCl  | 30.8 (31.1) | 3.6 (3.8) | 16.5 (16.2)  | 33.9 (34.1) | 9.9 (10.2)  |
| 7   | PhEtSnCl <sub>2</sub> : H <sub>2</sub> L 0.740 g (2.5): 0.255 g (2.5)   | 68        | PhEtSnClHL C <sub>8</sub> H <sub>16</sub> N <sub>4</sub> OSnCl  | 33.1 (33.2) | 4.0 (4.2) | 15.3 (15.5)  | 32.6 (32.8) | 9.6 (9.8)   |
| e   | PhBuSnCl <sub>2</sub> : H <sub>2</sub> L 0.809 g (2.5): 0.255 g (2.5)   | 74        | PhBuSnClHL C <sub>10</sub> H <sub>20</sub> N <sub>4</sub> OSnCl | 36.8 (37.0) | 4.6 (4.9) | 14.7 (14.4)  | 30.3 (30.5) | 8.9 (9.1)   |
| 4   | BuMeSnCl <sub>2</sub> : $H_2L$ 0.654 g (2.5): 0.255 g (2.5)             | 73        | BuMeSnCIHL C <sub>5</sub> H <sub>18</sub> N <sub>4</sub> OSnCl  | 25.5 (25.7) | 5.1 (5.2) | 16.9 (17.1)  | 36.1 (36.2) | 10.6 (10.8) |
| ŝ   | PhMeSnCl <sub>2</sub> : H <sub>2</sub> L 0.705 g (2.5): 0.255 g (2.5)   | 61        | PhMeSnL C <sub>7</sub> H <sub>12</sub> N <sub>4</sub> OSnCl     | 34.6 (34.8) | 3.8(3.9)  | 18.3 (18.0)  | 38.1 (38.2) | ,<br>I      |
| 9   | PhBuEtSnCl <sub>2</sub> : H <sub>2</sub> L 0.740 g (2.5): 0.255 g (2.5) | 63        | PhEtSnL C <sub>8</sub> H <sub>14</sub> N <sub>4</sub> OSnCl     | 36.9 (37.0) | 4.1(4.3)  | 17.4 (17.2)  | 36.7 (36.5) | I           |
| 1   | PhBuSnCl <sub>2</sub> : H <sub>2</sub> L 0.809 g (2.5): 0.255 g (2.5)   | 62        | PhBuSnL C <sub>10</sub> H <sub>18</sub> N <sub>4</sub> OSnCl    | 40.9(40.8)  | 4.9(5.1)  | 15.7 (15.9)  | 33.3 (33.6) | I           |
| æ   | BuMeSnCl <sub>2</sub> : $H_2L$ 0.654 g (2.5): 0.255 g (2.5)             | 67        | BuMeSnL C <sub>5</sub> H <sub>16</sub> N <sub>4</sub> OSnCl     | 28.7 (28.9) | 5.7 (5.5) | 19.5 (19.3)  | 40.6 (40.8) | Ι           |
|     |                                                                         |           |                                                                 |             |           |              |             |             |

Table 3. Analytical data.

2065

#### References

2066

- [1] C. Ma, Y. Li, R. Zhang, D. Wang. J. Organomet. Chem., 689, 96 (2004).
- [2] P.J. Smith. Chemistry of Tin, Blackie Academic & Professional, London (1998).
- [3] M. Gielen. J. Braz. Chem. Soc., 14, 870 (1992).
- [4] M. Gielen. Appl. Organomet. Chem., 16, 481 (2002).
- [5] M. Gielen, M. Biesemans, R. Willem. Appl. Organomet. Chem., 19, 440 (2005).
- [6] S. Tabassum, C. Pettinari. J. Organomet. Chem., 691, 1761 (2006).
- [7] C. Pellerito, L. Nagy, L. Pellerito, A. Szorcsik. J. Organomet. Chem., 691, 1733 (2006).
- [8] D. Kovala-Demertzi. J. Organomet. Chem., 691, 1767 (2006).
- [9] S.G. Roger. Advances in Organometallic Chemistry, Vol. 33, Academic Press, Bath (1991).
- [10] H. Yin, M. Hong, Q. Wang. Chin. J. Chem., 23, 105 (2005).
- [11] R.H. Holm, S. Ciurli, J.A. Weigel. Prog. Inorg. Chem., 28, 1 (1990).
- [12] J.G. Wright, M.J. Natan, F.M. MacDonnell, D.M. Ralston, T.V. O'Halloran. Prog. Inorg. Chem., 38, 323 (1990).
- [13] K.C. Dash, H. Schmidbaur. Metal Ions in Biological Systems, Marcel Dekker, New York (1982).
- [14] J. Slangen, P. Kerkhoff. Nutr. Cycling Agroecosyst., 5 (1984).
- [15] S.L. LeVan, J.E. Winandy. Wood Fiber Sci., 22(1), 113 (1990)
- [16] W. Qingwen, L. Jian, J.E. Winandy. Wood Sci. Technol., 38(5), 375 (2004).
- [17] Y. Ogawa, H. Hisada, H. Kimoto, H. Okutani. Jpn. Kokai Tokkyo Koho, 5 (1975).
- [18] T. Seki, S. Ogura. Jpn. Kokai Tokkyo Koho, 3 (1988).
- [19] M. Ikazuchi. Jpn. Kokai Tokkyo Koho, 13 (2004).
- [20] I. Hirotsu, O. Ito. Jpn. Kokai Tokkyo Koho, 7 (1990).
- [21] J. Stekar, P. Hilgard. Ger. Offen., 25 (1985).
- [22] P. Ray. Chem. Rev., 61, 313 (1961).
- [23] P.V. Babykutty, C.P. Prabhakaran, R. Anantaraman, C.G.R. Nair. J. Inorg. Nucl. Chem., 39(5), 913 (1977).
- [24] A. Maitra, D. Sen. Inorg. Nucl. Chem. Lett., 8(9), 793 (1972).
- [25] C.A. Bremner, W.T.A. Harrison. Acta Crystallog., E58(6), m254 (2002).
- [26] H.G. Kuivila, R. Sommer, D.C. Green. J. Org. Chem., 33, 1119 (1968).
- [27] K. Gratz, F. Huber. J. Organomet. Chem., 41, 290 (1985).
- [28] A.N. Maitra, D. Sen. J. Inorg. Nucl. Chem., 34, 3643 (1972).
- [29] J. Bassett, R.C. Denny, G.H. Jeffery, J.A. Mendham. A Text Book of Quantitative Inorganic Analysis, Langmans, London (1978).
- [30] R.C. Poller. The Chemistry of Organotin Compounds, Logos Press Limited, London (1970).
- [31] P.C. Srivastava, B.K. Banerjee. Ind. J. Chem., 17A, 583 (1979).
- [32] D. Karipidies, W.C. Fernelius. Inorg. Synth., 56, 7 (1963).
- [33] E. Breitmair, W. Voelter. <sup>13</sup>C-NMR Spectroscopy (High-Resolution Methods and Application in Organic Chemistry and Biochemistry), VCH Publication, West Germany (1990).
- [34] G.G. Lobbia, F. Bonati, P. Cecchi, D. Leonesi. J. Org. Chem., 155, 391 (1990).
- [35] J. Holecek, M. Nadvornik, K. Handlir, A. Lycka. J. Organomet. Chem., 299, 315 (1986).